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Preface

The objective of this new study is an examination of the influence of fracturing and

anisotropy in the source medium or near the source on radiation patterns from explosions,

including the generation of SV and SH. In previous work under other contracts we have

studied radiation patterns of P and S waves for explosions set off in anisotropic media,

especially for cases that mimic earthquakes and/or generate SH waves. This report consists

of a manuscript submitted to Geophysical Journal International presenting a formalism for

calculating the effects of scattering from fracture zones of material, such as might be found

near the source in a test site.
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ABSTRACT

We present a ray-Born method for the computation of scattered wavefields in a general 3-

D, anisotropic medium. This approach applies ray methods to the computation of Green's

tensors for a background earth model and uses the Born approximation to determine the

scattered wavefield from each volume element within a discretized model of heterogeneity.

The application of these two approximate methods requires that the background model

be relatively smooth compared to a wavelength for the validity of ray theory, but that

the scattering heterogeneity have short characteristic length compared to the propagating

wavelength for accurate use of the Born approximation. Comparisons of ray-Born results to

the complete solution for scattering from an elastic sphere show that this method works fairly

well for wavelengths on the order of five times larger than the length scales typical of the

heterogeneity, but then breaks down due to the failure of the Born approximation. With this

restriction in mind, the method is applied to a hypothetical layered earth model containing

a thin, laterally extensive fracture zone. The results show that scattering from shear waves

gives unique information on fracture orientation, since the properties of the reflected events

depend significantly on the orientation of the incident S-wave polarization with respect to the

fractures. For example, as the polarization of an incident SH-wave varies from perpendicular

to parallel to aligned vertical fractures. the scattered wave amplitude decreases to zero. In

intermediate directions, the polarization of the scattered wave includes some SV energy. On

the other hand, compressional wave reflections show essentially no variation with orientation

of the fractures. Modeling of waves scattered from fracture zones in VSP data from the

Larderello geothermal field in Italy demonstrates the applicability of the method to modeling

of field data and suggests that at least in this locality, anisotropic fracturing is not completely

responsible for the observations. Analysis of the Fresnel zones affecting reflections from the

thin fracture zones responsible for the scattering allows a delineation of regions of more

intense fracturing, which is important for the development of geothermal resources.
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INTRODUCTION

The modeling of seismic wave propagation to understand the effects of various earth scruc-

tures on observations and, conversely, to infer rock properties from data is hindered by the

complexity of geological materials. In many cases, the geologic structures of interest are

small compared to the three-dimensional volume through which the waves are transmitted,

leading to practical difficulties in the implementation of numerical schemes, such as finite

differences. Wave propagation is also complicated in many cases by anisotropy, which may

be an inherent anisotropy of the minerals or an effective anisotropy due to the presence of

a stack of thin isotropic layers (Crampin, 1981). Either of these effects usually leads to a

transversely isotropic medium with a vertical axis of symmetry. Another important source of

effective anisotropy in the crust is the alignment of fractures in an otherwise isotropic and ho-

mogeneous layer, also leading to a transversely isotropic medium (Bamford and Nunn, 1979;

Crampin, 1981; Crampin et al., 1986; Leary et al.. 1987). Frequently the least principal

stress is known through geological, seismological or borehole observations to be horizontal

at depth (Zoback and Zoback, 1980; Jamison and Cook, 1980; Hickman et al., 1988; Evans

et al., 1989), and this configuration results in a vertical alignment of cracks. The medium

then has a horizontal axis of symmetry.

There have been many analyses of the effects of fractured layers of the earth on synthetic

seismograms or field data (Crampin, 1978; Crampin, 1981; Crampin and McGonigle, 1985;

Leary and Henyey, 1985; Martin and Davis, 1987; Ben-Menahem and Sena, 1990; Mandal

and Toks6z, 1990; Spencer and Chi, 1991; Mueller, 1991). Most of these studies focus on the

effects of shear wave splitting and the consequent anomalies in the polarization of observed

shear wave data. These approaches are very successful in locations where the fractured,

anisotropic region is relatively thick. In these areas, the two quasi-shear waves are observed

at the receiver location with enough separation in time that they can be uniquely identified.

However, it is not realistic to suggest that the earth is everywhere uniformly fractured.
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Many practical problems require the location of relatively small fracture zones within the

surrounding bedrock. Some important examples of such problems are the location of frac-

tures for the development of geothermal fields (Leary and Henyey, 1985; Batini et al.. 1985a;

Batini et al., 1991), for nuclear waste disposal (Green and Mair, 1983; Carswell and Moon.

1985), or for other purposes (Juhlin et al., 1991). These are examples of situations where

the dimensions of the fracture zones are often not sufficiently thick that shear wave splitting

will be detectable, even if the zone is anisotropic. Therefore, a different form of evidence for

the fracturing must be sought in seismic data.

To achieve this objective, we apply a ray-Born computation of synthetic seismograms

to model the scattering of elastic waves by relatively small features in three-dimensional

structures. This approach is similar to that of Beydoun and Mendes (1989), who outline a

ray-Born algorithm for migration or inversion problems in three-dimensional, isotropic me-

dia with examples of application to two-dimensional problems. Two basic approximations

are employed to compute the wavefields expected for relatively complicated media. First,

ray theory is used to compute the Green's tensors for a background earth model. Because

asymptotic ray theory is employed, this background reference model must be sufficiently

smooth that the high frequency assumption is valid (Ben-Menahem and Beydoun, 1985).

Ray tracing has the advantage of allowing the computation of Green's tensors for large,

three-dimensional models with minimal computation time. The second step is to use the

Born approximation to compute the elastic waves generated by perturbations to the refer-

ence model, a method which expresses the effects of the perturbations as secondary sources

radiating energy as they are encountered by the wave propagating in the background medium

(Gubernatis et al., 1977; Wu and Aki, 1985; Gibson and Ben-Menahem, 1991). Application

of this approximation is valid only for small, short wavelength features of an earth model.

We show how the ray-Born method can be extended to fully general anisotropic and inho-

mogeneous earth models using the high frequency Green's tensor for anisotropic background

media (Ben-Menahem et al., 1990) and the expressions for the secondary source radiation



by anisotropic perturbations developed in Gibson and Ben-Menahem (1991). We apply the

method to three-dimensional isotropic earth models with anisotropic perturbations.

After describing the ray-Born algorithm, including a brief review of the Born approxima-

tion, we explore the question of the accuracy of the Born approximation in computing the

scattered waves caused by varying degrees of heterogeneity. This is accomplished by com-

paring the ray-Born results with the complete solution for waves scattered from an elastic

sphere by an incident plane P-wave. Using the guidelines for application of the ray-Born

algorithm developed by this comparison, we next examine the wavefields generated by a

thin but laterally extensive fracture zone in a hypothetical layered earth model to gain an

understanding of the effects of fracture orientation on seismic waves in an ideal case. Lastly,

we examine a set of VSP data from the Larderello geothermal field in Italy, where an impor-

tant objective in the course of exploitation of geothermal resources is the delineation of thin

fracture zones several kilometers in depth. We present a fracture zone model that explains

the observed data and discuss the implications of the results to determine fracture alignment

in the Larderello field based on the synthetic results from our model.

COMPUTATION OF THE BORN SCATTERED FIELD

The Born Integral Equation

The vector form of the source free equation of motion for an inhomogeneous medium is

pii - V. T = 0, (1)

where p is density, u is the displacement vector, and T is the stress tensor (Ben-Menahem

and Singh, 1981). Derivatives with respect to time are indicated by the dot symbols over

the vector u. Hooke's layv relates the stress tensor and the strain tensor E through the

fourth-order elastic tensor c:

T = c : E. (2)
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The elastic tensor obeys the usual symmetry relationships

Cijkl = Cklij = CjikI = Cijik, (3)

resulting in a total of 21 independent elastic constants.

The Born approximation to the scattered field generated by heterogeneous materials is

obtained by considering perturbations of the elastic properties of a prescribed background

reference model:

p(x) = 0 (x) + 6p(x)

cijki(x) = C'ik(X) + 6CijkL(X). (4)

Here the superscript 0 indicates a value of the known background model and x is the position

vector. The values bp(x) and bciki(x) are the perturbations to the reference values po(x)

and 0cjki(x). Both the background and perturbation models are taken to be functions of

location x. Derivation of expressions for the scattered field proceeds by assuming that the

displacement field in the total medium is also given by the sum of the field u°(x) which

would propagate in the background material and a scattered field u(x):

u(x, t) = u0 (x, t) + 6u(x, t). (5)

Gibson and Ben-Menahem (1991) show that substitution of equations (4) and (5) into the

equation of motion (1), neglecting second-order terms, yields a solution for the scattered

field

bu(x, t) - J dV(x') J dt' G°(x, t: x', t') • (bPi°(x'. t'))

+ / dV(x') I dt' [bc(x', t') : E°(x', t')] : \"G 0-(x, t; x', t'). (6)

The - symbol indicates transpose of the Green's tensor Go. This Born approximation pro-

vides an approximation to the scattered field in terms of the incident wavefield u0 (x. t) prop-

agating in the background medium, as E°(x', t') is the strain associated with this displace-

ment. G(x, t; x', t') is the Green's tensor for the background earth model. with component
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G9 (x, t: x',t') representing the i component disturbance at location x from a source applied

at x' in the xj direction. The perturbations to the material quantities act as secondary

sources for displacement fields propagating in the reference model, where the product of

density perturbation and acceleration vector yields a single-force source vector at each point

x' and time t'. Likewise, perturbations to the elastic tensor c result in double-force source

terms which are doubly contracted against G°(x, t; x', t'). This moment tensor type source

6111 = Sc 1jkiEk is more eaiily interpreted by writing it in the following form, employing the

standard Voigt notation:

6M11 , 6C, 6C,2 6C13 6C14 6C15 ,SC,6 Ell
0

6M 22  6 C22 623 6C24 6C25 6C26

6M 33  6C33 6C34 6C35 6C36 33

6 IM2 3  6C44 6C45 6C46 20(3

SM 3  6C 55 6C56 2E10
6M 12  6C6 262

In this expression, q, are the components of the strain tensor E°(x', t').

Evaluation of the Integral

Using equation (6), the Born scattered field for prescribed perturbations bp and bCijki can

be computed once the incident field uo(x,t) and its associated strain E 0 (x' , t') are known.

The Green's tensor G°(x, t; x', t') is the fundamental quantity which must be obtained, as it

can be used to compute these background fields as well as the displacements generated by

the secondary sources on the right-hand side of equation (6). Therefore, application of the

integral solution first requires the knowledge of the Green's tensors for propagation in the

background model and then an algorithm for the actual evaluation of the integral.

Following Beydoun and Mendes (1989), we proceed by discretizing the perturbed volume

of the earth model (Figure 1). Each unit cell within the discretization is a rectangular



prism with dimensions dx1 , dX2, and dx 3 . As long as the wavelength of the incident wave is

much greater than the largest dimension dxi, the scattering due to each individual elemental

volume is equivalent to Rayleigh scattering, which reduces the integration over volume in

equation (6) to a simple multiplication by the elemental volume dV = dxldx2dx 3 for a given

unit cell:

bu(x, 1) = bV J dt' G°(x, t; x', t'). (bpi°(x', t'))

+ 6V dt' (6c(O, t') : E°(O, t')) : VG°(x, t; 0, t'), (8)

or, in component notation,

6ui(x, t) = bV f dt' Gi(x, t; x', t')(bpiij°(x' , t'))

+Vf dt' (bCk0(X', t')EmX't'))G ( txt (9)

Under the condition of Rayleigh scattering, each cell in the perturbed volume therefore acts

as a point source located at the center of the cell, indicated by the dots in Figure 1. The point

source at each lattice point is equivalent to some combination of single or double forces as

presented in equation (6). Evaluation of the integral is most easily accomplished by simply

summing the contributions of each of the point sources within the scattering volume, which

corresponds to the most elementary implementation of the definition of an integral in terms

of the limit of a sum of increasingly finely discretized representations of the range of the

integral (Budak and Fomin, 1983). As long as the discretization of the volume is sufficiently

small, the evaluation of the integral by this means should be sufficiently accurate.

A constraint on the sizes of the discretization intervals dxI, dx 2 and dX3 is made by

considering the dominant period of the incident wave and therefore the incident wavelength.

Adequate construction of the scattered wave requires at least four samples per period of the

wave. For a reflected (back scattered) wave, the interval between the signals by adjacent

pixels will be 2dxi/v for a wave propagating in the xi direction at velocity v. To obtain an

adequate sampling then requires that the spacing dx, be less than or e(qial to 1/8 of the

8



wavelength. For nearly vertically travelling waves, this constraint will apply to dx3. The

intervals dx1 and dx 2 can be somewhat larger, as the wavefront will be essentially tangent

to the xI-x 2 plane, and the integrand in equation (6) will vary much more slowly in these

directions.

The application of this integration scheme then requires a knowledge of the Green's

tensors corresponding to the wave propagation from the primary source to each elemental

scattering volume, yielding the properties of each secondary point source, and also from

the scattering volume to the receivers, which determines the scattered field from each point

source. Ray methods provide a fast and flexible means for performing these calculations in

general three-dimensional layered models. The principal requirement for ray solutions to be

applicable is that the wavelength must be much less than the characteristic length scale of

the background earth model (Ben-Menahem and Beydoun, 1985). For inhomogeneous and

anisotropic media meeting this length scale requirement, the ray theoretical Green's tensor

is given by (Ben-Menahem et al., 1991)

1 [ P(xo)v(xo)3(xo) /

G°(x. 1; x" 1') 47fy(x0)F [P] [g(x)g(xo)]l (r(xlxo)), (10)

where x0 is the source position, x is the observation point, v(x) is phase velocity, and

v(x)J(x) is the Jacobian of the transformation from Cartesian coordinates xi to ray coordi-

nates -yj, where J(x) is given by

O() x OxNJ x) 1hxT 1972 .gI (1

The ray coordinates are specified to be the two take-off angles of the ray at the source, the

declination angle 0 and the azimuthal angle 0 (Figure 2). It is important to realize that

this Green's tensor contains only quantities obtained in the course of normal ray tracing

algorithms. It contains the effects of geometrical spreading on amplitudes through the ratio of

Jacobians v(xo)J(xo)/v(x)J(x), as well as the material properties at the source and receiver

points. The scalar amplitude multiplies a dyad given by the outer product of the polarization

9



vectors at the source and at the observation position, reproducing the usual reciprocity of

elastic wave propagation in inhomogeneous media, whereby exchange of source and receiver

positions result in the equivalence (Ben-Menahem and Singh, 1981)

G(x, t; x', t') = Gji(x', t'; x, t). (12)

This ray theoretical Green's tensor will not be able to model aspects of wave propagation such

as caustics or shadow zones, a fundamental limitation of the high frequency approximation

(Cerven', 1985).

Given the general ray theoretical Green's tensor in equation (10), the ray-Born method

could be applied to general anisotropic media with anisotropic inhomogeneity. However, as a

first step, we consider only an isotropic, inhomogeneous background model with anisotropic

inclusions in order to develop an understanding of the effects of localized anisotropic regions

on elastic wave propagation. This also allows the utilization of the elegant dynamic ray

tracing (DRT) techniques in the ray-centered coordinates qt with basis vectors et (Figure 2)

(Cerven , 1985). The DRT involves, in addition to the standard determination of ray path

and travel time (kinematic ray tracing, KRT), the integration of eight additional ordinary

differential equations to obtain the 2 by 2 matrices Q and P. These components of these

matrices can be expressed as

QIJ= dq (13)
19 71

PtJ = I drj (14)

Ilere r is the travel time along the ray, and 1, J = 1,2. The Ptj are needed only to obtain

QIJ.

The matrix Q is related to the curvature of the wavefront ((erven', 1985). Knowledge of

the components of this matrix yields geometric spreading, which is proportional to det Q. Q

is also used for the application of the paraxial method. which allows extrapolation of travel

time and polarization vectors from a central ray which has been obtained by integration
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to nearby observation points. This results in significant savings in computation time, as

the two-point ray tracing is avoided. In an application such as the ray-Born method where

the incident wavefield must be known at a large number of points, this is an especially

valuable feature. These paraxial ray tracing procedures are discussed in many references

(e.g., Cerven , 1985).

In addition to these more typical paraxial corrections, we also include a correction to the

geometrical spreading amplitude factor which can be derived using geometrical arguments.

The integration of both the KRT and DRT equations is dependent on the choice of initial

values, but once these values are selected the integration of the ray equations governs all

propagation effects along the ray path from the initial point, within the limitations of the va-

lidity of ray methods. Because the initial conditions can be chosen along an initial wavefront

as easily as from a source point, it follows that the additional geometrical spreading from the

wavefront at central ray point x' and time r(x') to the wavefront at observation point x and

time -r(x) + Ar is in a homogeneous, isotropic material equivalent to the distance between

wavefronts vAr. The total geometrical spreading is then

det Q + vAr. (15)

In an inhomogeneous material, this correction will be less accurate, but since the paraxial

corrections can only be applied a relatively short distance from the central ray, it should

not be a severe limitation; application of this correction can be restricted to homogeneous

regions of a model. It should also be noted that in this formulation, the changes in reflection

and transmission coefficients with the variation in incidence angles on interfaces from the

central ray to the ray which would actually intersect the observation point are not included.

This also should not be a severe limitation except possibly near critical angles.

Another useful aspect of the DRT is that the partial derivatives may be used in an

iterative two-point ray tracing scheme for rays propagating from the source to fixed receiver

locations. While this is not necessary for the calculation of synthetic seismograms. it is often

11



desirable for the determination of accurate ray paths and will yield more accurate results

than the straight application of the paraxial method. Once a ray is traced with an initial

source point x and take-off angles -y, and - ° , the '/I and 2' corresponding to the ray arriving

at the desired observation point can be estimated through

-t _- ry + (Q-')ujqj. (16)

We apply this result to two steps in the ray-Born procedure. First, for the computation of the

background synthetic seismograms, we perform an iterative, two-point ray tracing procedure

where we shoot a fan of rays over some range of prescribed take-off angles. Beginning with

the closest ray to each receiver, we repeatedly apply equation (16) until the ray arrives with

some distance of the desired receiver point. For layered models, the ray arriving essentially

at the receiver point can usually be determined in three or fewer iterations, providing a

very rapid determination of ray paths for multiply reflected and transmitted rays. For more

complicated models, the procedure may not converge well, in which case the straight paraxial

method can be applied. The second application of equation (16) is in the computation of

the Green's tensor. Since the dyad in equation (10) contains the polarization vector at botch

the source and receiver points, to compute the tensor using the paraxial method at t he

scattering lattice we employ (16) to correct the polarization at the start of the central ray

to be approximately that of the ray joining the source point and scattering point. Cerven'

et al. (1987) outline the conversion of the results for the polarization dyad in ray-centered

coordinates to Cartesian coordinates. Both SH and SV waves are automatically included in

this procedure applied in ray-centered coordinates.

The algorithm can be summarized as follows:

1. Synthetic seismograms are computed for the background model using the iterative

two-point ray tracing technique or the paraxial method. Green's tensors are com-

puted and then the desired primary source type is applied to compute the background

displacement field.
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2. Green's tensors are computed for propagation from the primary source to each ele-

mental volume in the scattering region. The Green's tensors are also computed for

propagation from tile scattering lattice to receivers. It is generally more convenient to

do the ray tracing from receivers to the scattering volume and then app'y the princi-

ple of reciprocity, transposing the Green's tensors (Ben-Menahem and Singh, 1981).

Paraxial corrections are applied to rays passing near scattering points to minimize the

amount of rav tracing necessary.

3. Perturbations to the material properties are specified, and the integration of equation

(6) is performed by summing the contribution of each point source within the scattering

lattice. The scattered field resulting from this calculation is then added to the primary

field to produce the final synthetic seismograms.

An advantage of this method is that the Green's tensors may be saved prior to the application

of the primary source of the Born approximation. This makes possible rapid comparison of

the effects of different primary sources or different material perturbations on the wavefields,

as the ray tracing, the most time consuming part of the algorithm, need only be done once.

COMPARISON OF RAY-BORN RESULTS TO A KNOWN

ANALYTIC SOLUTION

The preceding ray-Born algorithm is in principle very general and can be applied to a wide

variety of three-dimensional earth models, both isotropic and anisotropic. As long as the

ray tracing can be satisfactorily accomplished, the integral over volume of heterogeneity is

simply computed by summation. However, prior to application of the method to general

problems, it is desirable to have some knowledge as to the accuracy and validity of the

resulting synthetic seismograms. For this purpose, we compare the ray-Born scattered field

results for a spherical object to the known solution in terms of spherical harmonics. This
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comparison was chosen because it provides a true 3-D test of the ray-Born method for an

obstacle of finite extent. If the heterogeneity were of infinite volume, such as a thin layer,

then a synthesis of ray-Born results in practical implementations would require a truncation

of the range of the integral in equation (6) to some finite portion of the thin layer. In this

case, the comparisons would have to simultaneously examine both the accuracy of the ray-

Born method itself and the validity of truncating the range of integration, complicating the

conclusions that could be drawn from the results.

The scattered displacement field generated by a monochromatic plane wave incident on an

isotropic, elastic sphere in an infinite homogeneous medium was obtained by Ying and Truell

(1956). Derivation of this solution begins by expressing the components of displacement for

a planar P-wave incident along the z axis,

V,(X3,t) = vi(X3,t)e i ' t

vi(x3,t) = 3e -  
, (17)

in terms of an expansion of a potential Oi in spherical harmonics:

ui =-Vo,

4i =(--) "(_i)'(2m + 1)jm(ktr)P,(cos 9). (18)

TM0

In these expressions, ki = wa, where a is the compressional wave velocity in the infinite

medium, 1m is the spherical Bessel function of the first kind, and P, is the Legendre polyno-

mial. Spherical coordinates r and 0 are illustrated in Figure 3. The scattered displacements

are given by

V, Ve
i t t

v,= -V, + V x V x (irl,), (19)

where V), and II., are the compressional and shear wave potentials respectively, with harmonic
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expansions
00

ibo = E Ahm(kir)P,(cosO)
mnO

00

= j B,,,h,(nir)P,(cosO). (20)
m0

Here h, is the spherical Bessel function of the third kind, t, = wfl is the shear wave number,

and Am. and B, are the as yet unknown coefficients of the expansion. The displacement field

inside the sphere is expressed in similar expansions. giving two more unknown coefficients

C, and Di. Boundary conditions on continuity of stress and displacement are applied at

the surface of the spherical obstacle, resulting in four simultaneous equations that must be

solved for the coefficients in each term m in the expansions.

Since a general seismic signal is actually composed of contributions from multiple frequen-

cies, we apply a discrete wavenumber algorithm to compute synthetic seismograms as follows.

A range of discrete frequencies is specified, fi = Af, 2Af, 3Af, ... , fVq, where fnyVq = 1/2At

is the Nyquist frequency corresponding to the time domain sample interval At. Each fre-

quency fi corresponds to a wavenumber ki. The boundary value problem is then solved at

frequencies fi for the coefficients Am, B,,, Cm and Di. At each frequency, the harmonic

expansion is carried out to sufficiently high-order m, that coefficients Am,, B,,, Cm, and

D,,, are negligible compared to A0 , B0 , CO and Do. The Bessel functions of the first and sec-

ond kinds of arbitrary order are computed using a Miller's algorithm appropriately modified

for spherical Bessel functions (Press et al., 1988). Finally, after the scattered field r and 0

components have been computed at each frequency, this impulse response is convolved with

the spectrum of the incident plane wave signal through frequency domain multiplication.

and an inverse FFT is applied to produce the time domain response. In this way, the full

waveform elastic wave scattered field of the spherical obstacle can be computed for a general

incident plane wave pulse.

A comparison of the ray-Born and discrete wavenumber algorithm results was made using

a spherical object of radius a = 0.5 km surrounded by a ring of receivers at a distance of
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,40 km (Figure 4). This configuration of receivers allows a comparison of both forward (900)

and back scattering results (2700). The infinite medium velocities were ao = 4.5 km/sec and

10 = 2.7 km/sec, with density 2.67 g/cm3 ; velocities within the spherical region were set

to a = 4.545 km/s and 0 = 2.727 km/s, perturbations of 1%. Density was kept constant,

so that only the elastic Lam6 parameters were varied. For the ray-Born calculations, a

10 x 10 x 20 lattice with spacings dx1 = dx 2 = 0.10 km and dx3 = 0.05 km was specified

and centered on the origin (note that xi, x2, and xi correspond to x, y and z coordinates in

Figure 4). A finer spacing in the z direction was used for accurate evaluation of the ray-Born

integral since this was the direction of the incident wave propagation and thus the most rapid

variation of the integrand. Amplitude and phase of the incident plane wave are constant in

both x and y. The perturbations at all lattice points at a distance larger than 0.5 km were

set to zero providing an approximation to the spherical inhomogeneity. For both methods.

the source wavelet used was given by

s(t,) = e JO(ttO))/Y2 cos(wo(t - to)), (21)

where to is the arrival time, w0 = 27rf 0 contains the center frequency fo, and 'y is a free

parameter which we set to three. The resulting radial component P-wave synthetic seismo-

grams from the two methods for center frequencies of 0.25, 1, 2.5 and 5 Hz are compared in

Figures 5 and 6. The important parameter to determine the validity of the Born approxi-

mation is the ratio of wavelength to sphere diameter 77 = A,/d. These frequencies we have

examined, 0.25, 1, 2.5 and 5 1tz, provide ratios i7 = 18, 4.5, 1.8 and 0.9. respectively, for

compressional waves. Examination of the results for 77p = 18 (Figures 5A, 6A) shows that

the two solutions are very similar, which is not surprising as this long wavelength reproduces

the Rayleigh scattering result, where the forward (90') and back scattering (2700) ampli-

tudes are the same. A plot of the maximum amplitudes as a function of scattering direction

shows that there is a systematic difference in the two results. with the ray-Born amplitude

about, 15% to 20% less than the discrete wavenumber result (Figure 7). An error of ap-
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proximately 2% results simply because the volume of the discretized version of the sphere is

98% of the true sphere. The rest of the variation is explained by complicated interactions

of the plane wave with the sphere. Because the impulse response of the sphere increases

more rapidly with frequency than the amplitude of the incident wavelet decreases for the

low frequency source wavelet, the maximum response after convolution is actually shifted to

a slightly higher frequency (Gibson, 1991). As the amplitude of Rayleigh scattering goes as

,a,2 this increases the amplitude of the discrete wavenumber solution. This is not reflected

in the ray-Born solution, since it only includes the w0 specified for the center frequency of

the incident wavelet.

As the incident center frequency increases to 1 Hz and the ratio 77p decreases to 4.5 (Fig-

ures 5B, 6B). the two methods compare about as well as for 77p=1 8 , noting also the amplitude

plot in Figure 7. Errors are less than 20% in all directions for the P-wave amplitudes and less

than 10% for all back scattered energy. Decreasing the incident wavelength further, however,

causes the results for the ray-Born method to begin to degrade. We see that the spherical

harmonic solution predicts that the back scattering amplitude at 2700 will become approx-

imately constant for shorter wavelengths although forward scattering amplitude increases

significantly with frequency (Figures 5C. 6C). In one sense, the comparison of maximum

amplitudes is not a strictly valid measure of equivalence for the higher frequency results

in back scattering, since the discrete wavenumber results show that for qp = 0.9 (5 Hz),

both shear and compressional wave back scattering have the form of two reflections from the

front and back of the sphere, while the ray-Born method yields only a single wide pulse due

to insufficient cancellation of back scattered waves. Therefore, comparing the amplitude of

the single ray-Born wavelet with the values for the two reflected arrivals from the discrete

wavenumber results does not reflect the true mismatch of waveforms. The scattcred shear

waves were shown by Gibson (1991) to lead to the same conclusions regarding the accuracy

of the ray-Born method.

It is worth noting, however. that in spite of the limitations of the Born approximation
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the results for forward scattering at 900 from both solution methods still tend to compare

relatively well at higher frequencies. Also encouraging is that both methods predict a much

shorter pulse of higher apparent frequency for forward scattering than for back scattering and

that the total width in time of energy at each observation point is the same. The ray-Born

method succeeds in matching the gross features of the wavefields, including achieving at least

some of the general trends of amplitude variation with respect to both scattering direction

and increasing frequency. Details of the reflections are missing from the Born approximation.

We computed the scattered fields using both methods for P and S-wave velocity pertur-

bations of 10% and 50% as well as the 1% perturbation results shown here. The comparisons

are essentially the same as these results, although the details of the complete waveform so-

lution change slightly for the 50% velocity perturbation. These are not reproduced by the

ray-Born method, which has strictly linear behavior with respect to variation in elastic con-

stants. The amplitude comparisons become only slightly worse as the velocity perturbations

increas.e to 50%. The more significant failures of the ray-Born solution are still caused by

increasing frequency. Therefore, we conclude that a principal requirement for accurate solu-

tions using the ray-Born technique with the degrees of heterogeneity we considered is that

the incident and scattered wavelengths must be four to five times larger than the length scale

of the heterogeneity, a restriction which for the case above corresponds to frequencies less

than or equal to 1 Hz. As the magnitude of the perturbations decreases, this requirement

can be relaxed as the Born approximation will be more accurate for weaker heterogeneity.

Conversely, for equal accuracy for larger perturbations, a somewhat larger ratio of wave-

length to heterogeneity dimension must be imposed as the stronger velocity changes reduce

the accuracy of the Born approximation. Even when the wavelength ratio is larger than 5.

subtle aspects of wave interaction with heterogeneity can degrade results, as for the 0.25 Hz

scattering for our spherical model, where the resonances of the sphere cause a shift of the

principal response frequency.

These conclusions regarding the accuracy and validity of the ray-Born method are sup-
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ported by the analysis of Hudson and Heritage (1981). By assuming that the quantities

16)/A'L 6 s/aol, i p/pO, 6, and IL& are all small, it was shown that the series solution

returns the Born approximation. Therefore, conditions for validity of the Born approxima-

tion according to Hudson and Heritage (1981) can be stated as:

2Irdl6A << 1 (22)

and
2rd << 1. (23)

Here A' is shear wavelength in the background medium. These conditions are very similar to

those discussed above regarding results from the comparisons of the more complete numerical

solutions with ray-Born results.

Although density perturbations were not considered in the above examples since our ap-

plications consider only elastic constant perturbations, the restrictions on accuracy of the

ray-Born method should be much the same as for elastic properties. Both types of perturba-

tions occur in convolutional integrals over volume and time of the same form in equation (6).

Therefore, the main factor that controls the accuracy of the Born approximation is still the

rapidity of variation of the incident wavefield with respect to the volume of the heterogeneity.

The only difference is that for density, the particle acceleration multiplies the perturbation,

whereas the strain multiplies the elastic constant variation. Both acceleration and strain

vary with the same incident wavelength.

Si NTHETIC SEISMOGRAMS FROM A FRACTURE ZONE

MODEL

Given the guidelines established in the comparisons with the complete solution for scattering

by an elastic sphere, we apply the method to a layered earth model containing a relatively

thin but laterally extended zone of fracturing in the subsurface. Using the ray-Born method,
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we can easily compare the expected seismic response of the model without the fractured

region and with isotropic and anisotropic fracturing present. In addition, the effects of

various crack filling materials on the back scattered displacement fields are tested.

The background earth model is presented in Figure 8. It consists of three layers overlying

a half-space. The source is located at a depth of 0.25 km in the top layer, which is 0.50 km

thick, and receivers are located on the free surface at offsets from the source epicenter oi 0

to 1.95 km at an interval of 0.05 km, yielding a total of 40 observation points. A simulated

fracture zone is located in the third layer, and it is shaped like a rectangular prism with

dimensions of 0.315 km, 0.099 km and 0.018 km in the x, y and z directions, respectively.

These axis directions are chosen such that the receiver array is contained within the x - -

plane (Figure 8). We applied a center frequency of 25 Hz for the source wavelet. and the

lattice spacing was set to 0.009 km in %lI coordinate directions. The shear wavelength is

9.6 times the lattice spacing so that the ray-Born results should be valid for back scattered

waves. One end of this heterogeneity is located under the source point, and the region

is centered under the receiver array in the y direction, the direction perpendicular to the

receiver array. Though the background model is one-dimensional, the ray-Born solution

requires three-dimensional calculation of the Green's tensors due to the three-dimensional

nature of the scattering lattice. This example allows the paraxial method to be used to full

advantage, however, as rays need only be traced down the axis of the lattice in the x - Z

plane and the paraxial corrections can be used to project the results out of this symmetry

plane. Considerable computation time is saved, since the need to trace rays along multiple

azimuths is eliminated.

To calculate the scattered field for the isotropically and anisotropically fractured inhomo-

geneity, we use the perturbations to the Lam6 parameters given by the Hudson theory for the

effective elastic moduli of a fractured medium (Hudson, 1980, 1981; Crampin, 1984). The

effective moduli are given in terms of an expansion to second-order in crack density = na".

where n is the number density of cracks, and a is the radius of the penny-shaped cracks.
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We applied a crack density of 0.10, and assumed an aspect ratio of 0.005. For the first case,

we consider cracks which are dry or, equivalently, filled with gas under low pressure. The

Lam6 parameters for the unfractured layer and the fractured perturbations are presented in

Table 1. For the case of perturbations due only to fine cracks, density variations are not

important since the porosity volume is very small.

Shear Wave Scattering

In the ray tracing for the background field, we included P- and S-waves leaving the source

in both the upward and downward directions. The reflections from each interface were then

modeled, including phases with a single mode conversion from P to S or S to P on reflection.

as waves changing mode more than once are generally of very low amplitude. We first

consider the effects of the fracture zone on the pr-,,.ion of SH waves generated by a

single force source oriented perpendici,-r to the receiver line (Figure 9). No compressional

waves are emitted in the direction of the receiver array, and all shear signals have a horizontal

polarization. Taking the dot product of all the Gieen s tensors with the source vector then

yields a total of only six arrivals for this source on the transverse component, the shear to

shear wave reflections from each interface, including the rays reflecting first from the free

surface.

The calculated scattered field includes two S to S scattered waves, one leaving the source

in the downward direction, and the other reflecting from the free surface and subsequently

traveling to the fractured zone. The background field and total field (the sum of background

and scattered waves) for the isotropic fracture zone are compared in Figure 10 for the time

;nterval noted in Figure 9. Like the case of reflection from a planar interface, the incident SH-

waves do not yield a scattered P-wave signal and only a transverse component of displacement

is generated. The total displacement field distinctly shows the presence of the fractured zone.

Arrows in Figure 10 mark the arrival times of the two scattered signals on the zero offset trace,
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and they are clearly of comparable amplitude to the standard reflections from the nearby

planar interfaces. The finite extent of the fracture zone can be inferred from the fact that

the back scattered waves are only observed in the shorter offset receivers. These synthetic

results show that even thin fractured regions can be detected with seismic experiments.

Next we corsider the case where the experimental configuration is exactly the same as

above, except that within the fracture zone, all the fractures are vertical and parallel. In

this anisotropic case, the fractured zone is transversely isotropic with a horizontal axis of

symmetry. This symmetry direction provides an additional degree of freedom compared to

the isotropic case considered above, as the orientation of the fractures relative to the receiver

array must be considered. Figures 1A. llB, and llC compare the transverse component

total displacement fields computed for vertical fractures aligned perpendicular, parallel, and

at 450 to the receiver array, respectively. The resulting perturbations to the elastic constants

are given in Tables 2, 3 and 4. These constants are different for each case due to the rotation

of the anisotropic system as the coordinate system is held fixed in direction. Note that for

cracks perpendicular to the receiver array bC 44 = 0 (Table 2), which significantly affects the

total displacement field due to the SH-wave source. Since the only incident strain component

which is not vanishingly small is C23, and the only perturbation in this symmetry system

which influences scattering in the Born approximation (equation 7) is 6C44, the scattered

field will be essentially zero. Accordingly, in Figure llA, no scattered field is present.

When the fractures are aligned parallel to the receiver array, the perturbations to the

elastic constants have the same values as in the previous anisotropic model but are rear-

ranged somewhat due to the rotation of the elastic tensor (Table 3). The polarization of

incident SH-waves is now perpendicular to the fracture plane. Therefore, there will be large

scattered fields, as the incident (23 strain now interacts with a non-zero perturbation (equa-

tion 7). These effects are seen in the total field synthetic seismograms for the horizontal

point force source (Figure 1 1B). Comparison to Figure 10B shows that the scattered field

for this anisotropic model is even larger than the original results presented for the isotropic
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case. These results are easily understood intuitively as the incident and scattered waves

have polarization perpendicular to all of the thin cracks. Thus the maximum effect is to be

expected. This shows the sensitivity of shear waves to fracture alignment.

The results for the models with cracks perpendicular and parallel to the receiver array are

special cases in that both contain fractures oriented such that incident SH-wave displacement

is polarized in a symmetry direction of the anisotropic fracture zone. In the first case,

fractures perpendicular to the array, SH polarization is contained in the symmetry plane.

In the second example, the SH-wave is polarized parallel to the symmetry axis. If the

fracture orientation is at some arbitrary angle to the receiver line. Ave would expect the

resulting synthetic seismograms to be less simple. This effect is shown by the model where

the fractures are oriented at 450 to the array, with perturbations to the elastic constants

presented in Table 4.

The transverse component total displacement field from the horizontal point force source

is presented in Figure llC. While this signal is very similar to that observed for the isotropic

model (Figure 10B) and for the cracks parallel to the array (Figure llB), for the frst

time. the SH-wave source results in a significant radial component synthetic seismogram

(Figure 12). In the isotropic case, the perturbations are such that 6C 1 = 6C22 = 6C33 =

6A + 6ip, 6012 = 6C13 = 623 = 6A, and 6C44 = 6055 = 6C66 = bp are the only non-

zero perturbations. However, the perturbations for the 450 case clearly have other non-zero

perturbations (Table 4), and in addition, the equivalencies which hold in the isotropic model

are not all true. The result is a complicated secondary source representation which yields

both SH and SV energy from an incident SH-wave (equation 7). The vertical component

synthetic seismograms are still essentially zero since the vertically propagating shear waves

have almost no vertical components of displacement.

13y comparing the results for the different orientations of the vertical cracks with respect

to the receiver array (Figures Il and 12), it is clear that scattered or reflected shear waves

from anisotropic fracture zones are highly sensitive to the direction of the displacement
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polarization relative to the crack orientation. The returning energy from the fracture zone

varies in amplitude from a very large signal to vanishingly small, and also shows changes in

polarization in intermediate directions.

Compressional Wave Scattering

The utility of shear wave observations in the inference of fracture zone anisotropy is clear.

However, it is also of interest to understand the information given by compressional wave

experiments since it is often easier to obtain good quality, high frequency P-wave data in

practical situations. The effects of the isotropic fracture zone perturbations on P-waves are

examined by applying an explosion source to the Green's tensors. Figure 13 presents the

resulting background displacement field, which now contains non-zero radial and vertical

components. The largest disturbances on the vertical component are P-waves, with a pair

of reflections from the first interface observed at 0.2 and 0.32 sec on the zero-offset trace,

from the second interface at 0.52 and 0.65 sec, and from the third at 0.77 and 0.9 sec. In

addition, some large amplitude shear arrivals are observed at larger offsets. The radial com-

ponent is weaker at near source offsets since near vertical P-waves have minimal horizontal

displacement and shear wave conversions only become significant at larger offsets.

For the gas-filled fracture case, the perturbation to the Lam6 parameter 6A is about 5.5

times greater than the change in rigidity p (Table 1). We thus expect that the compressional

wave scattering will be relatively significant, as a change in A affects only P-wave scattering

(Gibson and Ben-Menahem, 1991). Since the nearly vertically travelling compressional waves

have a dominantly vertical displacement, only the vertical component synthetic seismograms

for the total displacement field for the explosion source are shown in Figure 14. where the

arrival timc. of the principal scattered waves are marked. The scattered compressional

waves are easily observed on the vertical component. These results and the example of the

transverse component Sit-waves show that both compressional and shear waves are of use
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in the detection of isotropic, gas-filled fracture zones.

In contrast, the scattering of incident compressional wave energy by anisotropic fracture

zones yields almost no information on crack orientation. Figure 15 displays the total field

synthetic seismograms for the three models considered for the shear waves, with fractures

aligned perpendicular, parallel, and at 450 to the receiver array. Comparison of the results

for the three models shows that the predicted synthetic seismograms are essentially the

same, and that the properties of the scattered P-waves do not depend on the azimuthal

orientation of vertical fracture zones. Mathematically, this can be easily understood as the

result of the strains induced by the incident wavefield and the consequent secondary source

terms due to elastic constant perturbations appearing in equation (7). The incident P-

wave strain, mostly E33, interact principally with the perturbation 6C33. Though reduced

from the isotropic equivalent 6,A + 26p (Table 1), this perturbation is still large enough to

generate energy on the vertical component seismograms so that the overall trends displayed

by the scattered waves are similar to those for the isotropic fracture zone (Figure 14B),

though slightly weaker. However, rotation of the vertical fractures with respect to the

receiver array leaves 5C3 3 invariant (compare Tables 2, 3 and 4). Therefore, the scattered

waves are practically constant with fracture orientation and we see that at least for nearly

vertically incident P-waves, no information on fracture orientation is available. The physical

interpretation of these predictions is also straightforward, as the displacement of the incident

wavefield is vertical and therefore more or less parallel to the crack plane for all orientations

of cracks; we should not expect much variation of reflection properties. This also explains the

reduced amplitude of the scattered waves from the anisotropic zone (Figure 15) as compared

to the isotropic fractures (Figure 14).
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APPLICATION TO FIELD DATA

The dolineation of fracture zones is of great practical interest in the development of geother-

mal fields, as the permeability created by the fractures can control the fluid flow in the

geothermal systems. To facilitate the development of the Larderello geothermal field in Italy

(Figure 16), an extensive geophysical study has been conducted (Batini et al., 1983, 1985a.

1985b, 1985c, 1991). Recently, a VSP experiment was conducted in the Badia 1A well in

the Larderello field to attempt to further delineate several possible fracture zones (Batini et

al., 1991). Interpretation of the processed data from the VSP experiments and a number

of other surface seismic surveys resulted in the suggestion that three reflected events from a

subsurface feature below the depth of the well bottom and labeled the "H marker" were due

to fracture zones distributed over a depth range of approximately 0.200 km. This model is

based on some regional seismic observations. We have used ray-Born synthetic seismograms

to test this a priori hypothesis and to develop a laterally varying model of fracture density

in three fracture zones, which accounts for these arrivals as observed from two VSP surveys.

Background Model

A local three-dimensional seismic survey allowed the development of a fairly detailed model

of the principal geological layers in the Badia area (Batini et al., 1991). The principal

geological features of the locality are two shallow layers consisting of various sedimentary

units overlying a thicker zone of metamorphic rock. The Ll and L markers form the lower

interfaces of the first and second sedlillentary layers, respectively. l-wave velocities for the

model arc given in a cross-section in Figure 17, a section in the east-west direction which

intersects the position of the Badia 1A well. Contour maps of the depths of the Li, L, and

11 markers are presented in Figure 18, along with the positions of the Badia 1A well and the

two locations for the Vibroseis source. One of the shot points is very close to the well and

will be called the zero offset point, and the A shot point i3 0.981 km north and slightly east
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of the well. These maps clearly demonstrate the three-dimensional nature of this modeling

problem.

Data

Due to difficult drilling conditions, the Badia 1A well is highly deviated (Figure 19), so that

only vertical geophone components have sufficiently high signal-to-noise ratio to analyze the

comparatively weak scattered arrivals. Many of the vertical component data traces were,

however, c ' tremely noisy after the first arrival, especially at shallower depths. Therefore,

a subset of recorded data was used, with receiver positions indicated in Figure 19. Slightly

different depth ranges are covered by the geophones from the zero and A offset experiments.

Data from both shot points are shown in Figure 20 where each trace is normalized to

unit amplitude on the first arrival. The signal from the far offset VSP is somewhat noisier,

since the first arrival prior to normalization is lower in amplitude due to a greater distance

from source to receiver. Therefore, noise is amplified more in the normalization than with

the zero-offset traces. For both data sets, however, the downgoing waves are clearly much

stronger than any reflected arrivals, which are not visible in these sections. To bring out

the upgoing reflected waves, we processed the data using a median filter (Hardage, 1983;

Reiter. 1991). The moveout velocity on the filter was set to the opposite of the apparent

velocity of the downgoing wave to enhance the reflected P-waves, and the filter was applied

across 17 traces. After median filtering, the data were subsequently low-pass filtered with

cutoff frequencies of 55 and 85 Hz for the zero and A offset data, respectively. Since the

predominant signal strength is at 30 Hz, this should not significantly affect the desired signal

in the results. The processed data are displayed in Figure 21 with a time squared gain factor

applied, and the zero offset data are magnified by a factor of three compared to the A offset

plot. The arrivals from the H marker are indicated on these plots. Considering the difference

in gain factors applied to the upgoing data plots, it is clear that the signal observed from
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the A offset source is much stronger, suggesting a lateral difference in the properties of the

I marker.

Modeling Results

The geological model (Figures 17 and 18) clearly demonstrates the three-dimensional struc-

ture of the sedimentary and metamorphic layers in the Larderello area. This significantly

affects the ray tracing procedures which must illuminate the H marker to calculate the scat-

tered waves, as would be expected. To illustrate this problem, we show the ray paths for

a fan of rays traced from both the zero and A offset source positions with azimuthal take-

off angle in the north-south direction (Figure 22). The resulting ray paths for both source

positions have large distortion in the east-west direction due to the Li and L interfaces (Fig-

ure 18), whereas in a one-dimensional earth model, these rays would be entirely contained in

a vertical plane. In particular, we see that for the A offset source the bending of the rays at

these interfaces is so large that the rays exit the model before reaching the H marker depth.

Therefore, computation of the Green's tensors for the incident wavefield in equation (6) re-

quires that we trace fans of rays like those in Figure 22 over all azimuths. Approximately

2,800 rays were traced from the two source positions. Although the rav tracing is simpler

from the receivers to the H marker since the metamorphic layer is homogeneous, even more

rays are required since the closer proximity of the receivers to the marker increases the range

of take-off angles for the fans of rays over all azimuths. Almost 8,000 rays were traced

from each receiver to insure sufficient coverage of the H marker. These points regarding

the thrce-dimensional nature of the wave propagation for this problem emphasize the value

of the ray tracing approach, which is a practical and feasible method of solution. A more

complete solution might in principle be obtained using a finite-difference method, but the

required discretization of the three-dimensional model to adequately represent the different

layers and the H marker would be prohibitively time consuming.
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Since the scattered waveforms are stronger on the A offset data, we began by developing

a model which would account for these data. A lattice was set up to conform to the map

of the H horizon in Figure 18C, though due to limitations of computer storage, we limited

the size of the lattice to 1.20 by 1.20 ki. It is more efficient for this modeling of scattering

by a thin sheet to actually restrict the lattice points to trace the depth of the sheet rather

than specifying a regular three-dimensional Cartesian lattice which would have many zero

valued nodes. For the A shot point, the lattice ranged from 0.6 to 1.8 km in the east-west

direction, the complete width of the map, but only from 0.5 to 1.7 km in the north-south

direction. Similarly. the lattice for the zero offset source ranged from 0.8 to 2.0 in the north-

south direction. Utilizing a discretization in the two horizontal directions of 0.020 km. this

results in a three-dimensional lattice of 61 by 61 by 1 points mapping the H marker. Other

forms of data analysis were unable to specify a thickness for the hypothetical fracture zones,

though various estimates ranged from 0.010 to 0.060 km. We therefore set the thickness of

the lattice to be 0.020 km. A source pulse for both the zero and A offsets was applied by

choosing the waveform recorded as a first arrival on representative traces with good signal-

to-noise ratio. Final synthetic seismograms should therefore be directly comparable to the

field observations.

By trial and error forward modeling, it was determined that a model consisting of three

fractured horizons could account for the observations. This was accomplished by temporarily

neglecting amplitude effects and matching only the arrival times of the observed data. The

depth and shape of the first of the zones, the H1 event, was left to conform to the map in

Figure 18C, since it was obtained by the regional three-dimensional survey. The second and

third zones. the H2 and H3 events, were defined to have the same lateral variation as shown

in Figure ISC, but deeper by 0.090 and 0.170 km, respectively. Our analysis, therefore,

confirms a total thickness of the 1I marker on the order of 0.200 km. It should be noted that

the largest amplitudes of the scattered waves in Figure 21 correspond to the arrivals from

the H2 and H3 horizons, in agreement with some other regional observations (Batini rt al.,
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1991).

After using these initial stages of modeling to define the depths of the HI. H2 and H3

markers, we developed a model to account for the differing strengths of the recorded scattered

waves from the two offsets by considering the regions imaged by the two experiments. In

Figure 23, we present contour maps of the total travel time from source to lattice point on

the H2 marker and back to the receiver for two pairs of receivers at equivalent well positions.

The dot in the interior of each plot indicates the minimum time, which corresponds to the

Fermat's principle true travel time for the reflected pulse. The contour interval for these plots

was chosen so that each contour outlines a Fresnel zone. Sheriff and Geldart (1982) define the

Fresnel zone such that the distance from source to scattering surface is a quarter wavelength

larger for the outer edge of the zone than from the inner edge. Using the dominant frequency

for these data of 30 Hz and the medium velocity of 5.1 km/sec, this distance corresponds to a

travel time difference of 0.0083 sec. Since most of the effect of the scattering surface is from

that region enclosed within the first Fresnel zone, these figures allow a simple determination

of the region of the H2 marker observed in the two VSP experiments.

Comparison of Figures 23A and 23C for receivers at the shallow region of the data and

Figures 23B and 23D from the deep portion shows that the A offset survey is imaging a

region of the H marker several hundred meters further to the north than the zero offset shot

point, though the imaging point for the deeper A offset receiver (Figure 23D) approaches

that for the shallow zero offset receiver (Figure 23A). We developed a model assuming

that the velocity variations at these markers are due to fracturing and that there must be

some larger velocity perturbations toward the north, toward shot point A. After attempting

several models, an isotropic model was developed which satisfactorily explains the data. The

crack density in the HI marker. which is weak in both data sets was set to 0.004 uniformly,

whereas for the H2 and 113 markers, crack density was set to 0.14 north of the 1.4 km line.

and 0.004 south of this border. Temperature and pressure conditions at the depth of the H

marker are very uncertain, but other weils suggest that values of about 3000C and several
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hundred bar pressure are appropriate (Batini et al., 1983). Under these conditions, the bulk

modulus of the pore filling fluid can probably be roughly estimated as 0.1 GPa (Anderson

and Whitcomb, 1973). Table 6 shows the resulting perturbations to Lame parameters. The

synthetic seismograms, processed exactly as were the data, are shown in Figure 24. From

these results we infer that our model adequately accounts for most of the seismic properties

in the region imaged by the A source. The quality of the fit of the zero offset synthedetic is

less satisfactory, however, which is at least in part a consequence of the lower signal to noise

ratio for the weak scattered wave in this data set. At least part of the signal. especially from

traces 55 to 65, is still relatively well modeled.

Although some observations from other wells suggested that vertical fractures are present

in the H marker, the successfi.i match of data and synthetic seismograms, particularly for

the A offset data, suggest that a purely isotropic model can account for these seismic obser-

vations. The synthetic examples shown above for the explosion source clearly demonstrate

that in any case a compressional wave experiment will not yield any information allowing

a unique interpretation of the presence of vertical fractures, the only difference from the

isotropic case being a weaker reflected wave. We attempted to develop a model for the H

marker using the elastic constant perturbations appropriate for vertical fractures, but even

a crack density as high as 0.30 yielded a signal for the A offset synthetics, which was far

weaker than the observed data. This crack density is already so high that it likely violates

the single scattering assumption used in the derivation of the expressions for the effective

elastic constants, so we did not test any higher values. Instead, we interpret these results

as suggesting that the principal source of the scattered seismic energy is an isotropic veloc-

ity change which may have some weak anisotropy superimposed due to vertical fractures.

The available data does not allow any further conclusions, and. as shown in the synthetic

examples. shear wave observations would be necrqsary to uniquely determine the presence

of anisotropy due to vertical fractures.

:31



DISCUSSION AND CONCLUSIONS

The ray-Born method for the modeling of the effects of small, localized regions of inhomo-

geneity on seismograms is general and can in principle be applied to fully anisotropic models.

Limitations on the ray theoretical aspects of the algorithm result from the well known as-

sumption of high frequency methods, namely, that the wavelength of the propagating signal

must be much less than the scale length of the background earth model (Ben-Menahem and

Beydoun, 1985). Comparisons of ray-Born solutions with the complete, discrete wavenumber

solution for the elastic wave scattering from a spherical inhomogeneity illustrate some of the

limitations of the Born approximation. The principal restriction is also one of scale lengths.

As the ratio of the propagating wavelength to the scale length of the inhomogeneity decreases

below a value of about 5, the Born approximation fails to reproduce some significant features

of the scattered waves. For the sphere, the missing features were the dual reflections from

the front and back of the sphere in the back scattering direction (Figures 5 and 6). The

ray-Born solution predicted only a single, broad pulse.

With these limitations in mind, we applied the method to synthetic studies of a thin,

laterally extended fracture zone in a simple layered earth model (Figure 8). These synthetic

results clearly demonstrate that we expect shear waves to provide useful information on

the alignment direction of vertical fractures, as the scattered wavefield varies significantly

with the polarization direction of the incident shear wave. In particular. if the incident SH-

wave is polarized at an angle to the fracture orientation, the scattered wavefield can have

significant energy on the radial component. Similar conclusions were reached by Spencer and

Chi (1991) in a theoretical examination of vertically incident shear waves on a uniformly

fractured layer or half-space. Mueller (1991) showed the correlation of lateral variation

of reflection properties of SH and SV waves with fracture intensity in the Austin Chalk

located in Central Texas. These effects, especially when combined with the variation of the

observations with different incident polarizations, are not likely to be reproduced by realistic
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isotropic inhornogeneity in similar earth models.

The synthetic models also show that compressional wave scattering varies little with

crack orientation, although we can still use reflected waves to detect fractured regions. A

more unique aspect of the P-wave data is its sensitivity to the material filling the cracks.

Since perturbations to the isotropic Lam6 parameter A affect only P-wave scattering and

the presence of liquid in the cracks decreases 6A significantly from the gas-filled case, the

amplitude of reflected P-waves also decreases dramatically (Gibson, 1991). These ray-Born

results reproduce the classic "bright spot" behavior often used to distinguish gas reservoirs

from oil reservoirs.

These guidelines help to interpret the VSP data from the Badia IA well in the Italian

Larderello geothermal field. We developed an isotropic model of three fracture zones con-

tributing to the seismic H marker, accounting for observed reflected waves from below the

depth of the well. The model implies that fracture density increases northwards and that this

would be a good direction for further exploratory drilling in development of the geothermal

resources.

There are, however, several ambiguities in the modeling which cannot be removed due

to limitations on the available data and which will affect all seismic studies of fractures.

especially those using P-wave data. For example, we cannot rule out the presence of aligned,

vertical fractures in the H marker since P-wave scattering from a vertically fractured region

shows no indication of fracture orientation. Comparison of synthetic models for isotropic

and .tnisotropic fracture zones of equal crack density (e.g., Figures 11 and 15) shows that

the amplitude of the observed P-waves should be reduced for the anisotropic model. The

large scattered field in the A offset data was not reproducible with realistic anisotropic

crack densities, which gives an indirect evidence for non-vertical fractures in this region. An

ambiguity in the ray-Born modeling of fracture zones that enters here is the state of the pore

fluids. We applied a value for bulk modulus of the fluid based on some values representative

for the estimated in situ conditions. It is possible. however, that there is some error in the
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bulk modulus value. If it is significantly overestimated, the effects of the fractures will be

more like those of the synthetic gas-filled fracture models with non-zero bulk modulus of

pore fluid and P-wave scattering amplitudes will increase for a given -rack density. This

might make it possible to develop an anisotropic model accounting for .,1e field data.

Another area of ambiguity is the equivalent effects of increased fracture zone thickness

.and increased fracture density. Due to the linearity of the method and our representation

of the scattering lattices as only a single unit cell in the vertical direction, a doubling of the

thickness of the unit cell results in a doubling of the scattered wavefield (equation 8). The

same effect results from a doubling of the perturbations to elastic constants. Our assumed

value of 0.020 km for the thickness of the three fractured intervals HI, 112 and 113 is of the

same order of size as other estimates (Batini et al., 1991), but could very well be off. At

the same time, the successful modeling of the observed data, especially for source offset A.

suggests that our model of the zones as a single lattice point in thickness is not far off and

that the zones are not too thick.

It is possible that both isotropic heterogeneity and superimposed vertical fracturing are

present. Iln this active geothermal area, ongoing hydrothermal processes will likely cause

mineral alteration and the sealing of many fractures (Batini et al., 1983; Batini et al.,

1985c). Under these conditions, the properties of the rock across the fractured regions

could be altered in such a way that a superposition of anisotropic fracturing and isotropic

velocity variations is not unrealistic. An increase in porosity due to pores of large aspect

ratio would change density proportionately more the elastic properties and would lead to

isotropic scattering of elastic waves. It appears from the modeling of the P-wave data that

the velocity variations are not entirely due to vertical fracturing in any case, and an isotropic

model can explain the data. The only way to concretely determine the presence or absence

of anisotropy would be to obtain high quality shear wave data from the same locations.

Similar conclusions regarding the information contained in seismic data were obtained by

Stolt a d Weglin (1985) in an analysis of mlli tliparam,.ter, Iini'arized iversion iet lods. l)u
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to the physics of wave propagation and limitations on observed quantities from experimental

configurations, signal-to-noise ratio, and the deep exploration targets, it may only be possible

to achieve some knowledge of the location in depth or time of heterogeneity. Increasingly

ambitious goals under better conditions or more elaborate experiments include: (1) the

sign of the property changes in the heterogeneous zone; (2) tile magnitude of the changes;

(3) lateral variations of data amplitudes allowing more detailed analysis; (4) inference of

multiple physical properties; and (5) true values of all earth properties. Clearly the last

goal is only going to be achievable in extremely rare cases. The analysis of the properties

of scattered wavefields from fractured zones shows that to achieve anything but the first

two or three goals requires very good quality seismic data and must incorporate shear wave

observations. Therefore. given that only compressional wave data of relatively low signal to

noise ratio was available, the ray-Born method allowed some very useful information on the

positions both vertically and laterally of some changes in earth properties.

Our models of both synthetic and field data emphasize the utility of the ray-Born method

for modeling scattered wavefields in complicated three-dimensional geological structures. Al-

though there is non-uniqueness in relating amplitude to fracture density and fracture zone

thickness, the model for the Badia 1A data does well in predicting the kinematic properties

of the scattered waves. It should therefore give concrete and valuable information on the

depths of the fracture zones. This type of information is of great utility in geothermal field

development. Especially for large three-dimensional problems, the method is a compara-

tively rapid and efficient means of exploring the effects of different models of small scale

heterogeneity within the earth. The results also clearly show the value of shear wave obser-

vat:ons in detailed resolution of subsurface seismic properties, particularly for the resolution

of anisotropy.
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Parameter I Background Value (GPa) I Perturbation (GPa)

A 21.49 -8.34

p 11.86 -1.49

Table 1. Background Lame parameters and perturbations for the fracture zone in the model

in Fig. 8 with randomly oriented, gas-filled fractures.

Parameter Background Value (GPa) I Perturbation (GPa)

Cl 45.21 -18.6

C22 = C33  45.21 -4.19

C23  21.49 -4.19

C13 = C12  21.49 -8.80

C44  11.86 0.0

C55 = CI6 11.86 -2.29

Table 2. Background elastic constants and perturbations tor the fracture zone in the model

in Fig. 8 with gas-filled vertical fractures oriented perpendicular to the receiver array. The

parameters C,1, C22, and C33 are all equivalent to A + 2p, in an isotropic medium, while

C12 = C13 = C23 = A and C44 = C55 = C66 = p.
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Parameter I Background Value (GPa) Perturbation GPa)

C11 = C33 45.21 -4.19

C22 45.21 -18.6

C13 21.49 -4.19

C23 = C12 21.49 -8.80

C55 11.86 0.0

C44 = C6 11.86 -2.29

'Fable 3. Background elastic constants and perturbations for the fracture zone in the model

in Fig. 8 with gas-filled vertical fractures oriented parallel to the receiver array.

Parameter Background Value (CPa) Perturbation (GPa)

C11 = C22 45.21 -12.4

C33 45.21 -4.19

C13 = C23 21.49 -6.50

C12 21.49 -7.80

C44 = ('55 11.86 -1.15

C6 11.86 -1.29

C16 = C26 0.0 3.60

C36 0.0 2.31

C45 0.0 1.15

Table 4. Background elastic constants and perturbations for the fracture zone in the model in

Fig. 8 with gas-filled vertical fractures oriented at -15* to the receiver array. In an isotropic

medium or in a transversely isotropic material in a coordinate system where one of the

coordinate axes parallels tlie axis of symmetry, C, C26, ( and 045 are all zero.
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Crack density Parameter Background Value (GPa) Perturbation (GPa)

= 0.14 A 23.6 -3.33

A 23.6 -3.33

S= 0.004 A 23.6 -0.10

_i 23.6 -0.10

Table 5. Background Lame parameters and perturbations for the fracture zone model for

the Badia location H markers. The marker Hi marker was assigned a crack density of 0.004

throughout the model, whereas the computed synthetics applied a crack density of 0.14 to

the H2 and H3 markers north of the 1.4 km latitudinal line (Fig. 18).
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INHOMOGENEOUS REGION
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2LATTICE

INCIDENT WAVE FRONT

Figure 1: Discretization scheme for implementation of the ray-Born algorithm. A two-
dimensional example is shown for clarity, though the actual implementation includes
three-dimensional scattering lattices and background models. All lattice points outside
the boundary of the inhomogeneity are assigned zero perturbation values, while those
points inside the boundary can be assigned non-zero perturbations to density or any
of the elastic constants Cjj. As the incident wavefront encounters a lattice point, that
particular point becomes a secondary source.
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X3 2 2.e2
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Figure 2: Diagrammatic illustration of the ray coordinates -y and "Y2 and ray-centered co-
ordinate basis vectors el, e2, and e3. The ray coordinates correspond to the azimuthal
and declination take-off angles, -y' and 72, respectively. At each point P on the ray, the
two basis vectors el and e2 are located in the plane tangent to the wavefront. while the
third vector e3 is tangent to the ray, forming a right-handed coordinate system valid in
the vicinity oi the ray ((rerven#, 1985).
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Figure 3: Spherical coordinate system. The scattered wavefields from the elastic sphere are
calculated for receiver distances sufficiently distant that the P-wave displacement will be
observed entirely on the radial component e, and the S-wave will appear only on the
eo component. The shear wave has only a eo component due to the symmetry of the
problem for a plane P-wave incident along the z axis.
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Figure 4: Receiver configuration for the computation of wivefields scattered from an elastic
sphere. The sphere is located at the origin of the coordinate system and the incident
plane P-wave is propagating in the downwards vertical direction so that the direction
90* corresponds to forward scattering, and 270* is the direction for back scattered waves.
The angles given here are equal to the angular coordinate 0 in Figure 3 minus 90' and
are used for reference in the synthetic seismogram plots.
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Figures 5A and 5B: ray-Born radial component synthetic seismograms for the scattering
from a compressional plane wave vertically incident on a sph~re showing scattered com-
pressional waves. Since the amplitudes of the scattered waves increase dramatically with
increasing frequency, the scale of the different plots was changed to allow the different
waveforms to be observed. A) Ratio of compressional wavelength to sphere diameter
1 = 18, frequency f = 0.25 liz. B) qp = 1.5, f = I liz. Plotting scale multiplied by 0. 1
relative to the 77p = 18 plot.
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Figures 5C and 51): C): q1p 1 .8, f = 2.5 fiz. Plotting scale mulltipliedl by 0.02 relative to
the 77p = IS plot. D) qp 0.9,f 5 Hz. P~lotting scale multiplied by 0.01 relative to the

qP= IS plot.
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Figures 6A and 6B: Discrete wavenumber radial component synthetic seismograms for the
scattering from a compressional plane wave vertically incident on a sphere showing scat-
tered compressional waves. All plot scales for a given frequency are the same as in Figure 5
so that waveforms may be directly compared for the ray-Born and discrete wavenumber
methods. A) Ratio of compressional wavelength to sphere diameter rip = 18. frequency
f = 0.25 Hz. B) r1p = 4.5, f = 1 Hz.
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Figures 6C and 6D: C): =1.8.- =25 iz. D) qp = 0.9, f = 5 Hz.
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I"igure 7: ('orrparisori of tihe amplitudes of coinpressional waves scattered from tie sphere
with 1% velocity perturbations with different values of incident wavelength to sphere

diameter ratio 14, indicated. Forward scattering is in thle direction 900 and back scattering

is at 2700.
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Figure 8: Background model used to calculate synthetic seismograms including the effect
of a thin fracture zone. Receivers are indicated by the black diamond symbols, and the
position of the source is shown. This model cross-section is contained in the X - z plane.
and the y axis is perpendicular to the figure.
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Figure 9: Transverse component background displacement field from a cross-line point source
for the earth model shown in Figure 8. Since only SH-waves are radiated in this coordinate
plane by the source vector, the radial and vertical component synthetic seismograms
contain no signal. Main reflections are identified as follows (prime indicates free surface
multiple): (A) S to S reflection from interface 1. (B) S to S reflection from interface 2.
(C) S to S reflection from interface 3.
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Figure 10: Comparison of the Sit-wave transverse component background displacement field

and th,' total displacement field for the model containing an isotropic fracture zone. This

figure contains the time window indicated on Figure 9. (A) Background displacement

field. (B) Total displacement field.
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Figure 11: Comparison of the SII xave t ransverse component total displacement fields for
three orientations of the vertical fractures with respect to the receivcr array from the
model in Figure 8. All plots 1in this figure arc at the saine scale as those it) Figure 10. and
the time window is indicated in 1Figure 9. (A\) Fractures perpendicular to the receiver
array. (B) Fractures parallel to the receiver atrray. (C) Fractures at 4Y5 to the receiver
array.
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Wl-ure 12: The radial component synthetic total field synthetic seismogram resulting when
the anisotropic fractures are aligned at 4,50 to the receiver array.
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Figure 13: Vertical (above) and radial (below) component synthetic seismograms from an
explosion source for the background model in Figure 8. The main reflections are identified
as follows (prime indicates a free surface multiple): (A) P to P reflection from interface
1. (B) P to P reflection from interface 2. (C) P t) 1) reflection from interface 3. (1)) P to
S reflection from interface 1. (E) P to S reflection from interface 2. (F) P to P reflection
from interface 3. (G) P to S reflection at free surface, followed by S to S reflection at
interface :3.
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Figure 14: Comparison of the P-wave vertical component background displacement field and

total displacement field for the model containing an isotropic fracture zone. This figure

contains the time window indicated on Figure 13. (A) Background displacement field.

(B) Total displacement field.
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Figure 15: Comparison of the 1'-wave vertical componenTt synthe(tic se'imograms for three
orientations of the anisotropic vertical fracturies with respect to the receiver array from
the model in Figure 8. All plots in this figuire are at the sarnc scale and include the same
time window as those in Figure 11. (.-) Fractures perpendicular to the receiver array.
(B) Fractures parallel to the receiver array. (C) F'ractures at -15' to I lie receiv'er array.
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Figure 16: Map showing the location of the Larderello geothermal field in Italy.
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V = 3 km/sec-i
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Figure 17: East-west cross-section of the background earth model used to compute the
synthetic seismograms for the Badia 1A VSP data. Sedimentary units are present in both
layers over the L horizon, while the rock below is metamorphic. The seismic properties
of the metamorphic zone are relatively honogeneous so that it may be represented by a
single velocity. Compressional wave velocities and densities are indicated in the figure.
aInd shear wave velocities were chosen so that the iV,/."; ratio was V/3.
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Figure 19A: Positions of geophones and the deviated Badia IA well. The geophones are
plottcd in all three coordinate planes. A) Geophone positions for the zero offset source.
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Figure 19B: B) Geophone positions for the A offset source.
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Figure 21: U pgoing w avefields for !he z,,ro ,.Ir .C .o , , , ,--, t ; d the A' offset (below ).
The dlata from F igurc' 20) v ro inedli i h!tw lf,',. iit: , .: s filt(e:-d to obtain these

sections. T he signal From the 11 i,uirkor is !w iv('. 1,',,-i - i i ,,, lines indicated on these
plo ts. N o te th a t. the ' zv ro o ll',v l p)](w P "; ca l d" t \ " (4 ,1: e ,:o l e to, th At'
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Figure 22: Ray paths for a fan of rays initially in the north-south vertical plane. All three
coordinate planes are plotted, and the Li, L and 11 markers are shown in the appro-
priate north-south cross section. When the rays encounter the Li and L horizon, the
irregular interfaces bend the ray paths so that they have a strongly three-dimensional
propagation showing the complexity of wave propagation in the Larderello reg'ion. In a
one-dimensional earth model. these rays would have no east-west components. To com-
pletely illuminate the H marker, similar fans of rays were traced over all azimuths from
both source positions. A) Ray fan from the zero offset source. B) Ray fan frc m the A
offset source.
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Figur.. 23: Contour plots of total travel time from the zero offset and A offset sources to
the H2 marker and then to receivers at comparable depths. Each contour line bounds
a Fresnel zone as described in the text. (A) Total travel time for the zero offset source,
receiver 30. (B3) Total travel time for the zero offset source, receiver 70. (C) Total travel
ime for the A offset source, receiver 22. This receiver is at the same depth as receiver

30 for the zero offset source. (D) Total travel time for the A offset source and receiver
62. This receiver is at the same depth as receiver 70 for the zero offset source.
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